Ideal approximation theory

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multiplier Ideal Sheaves, Nevanlinna Theory, and Diophantine Approximation

This note states a conjecture for Nevanlinna theory or diophantine approximation, with a sheaf of ideals in place of the normal crossings divisor. This is done by using a correction term involving a multiplier ideal sheaf. This new conjecture trivially implies earlier conjectures in Nevanlinna theory or diophantine approximation, and in fact is equivalent to these conjectures. Although it does ...

متن کامل

ideal theory in  -semihyperrings

the concept of  -semihyperring is a generalization of semiring, a generalization of semihyperring and a generalization of      -semiring. since the theory of ideals plays an important role in the theory of  - semihyperring, in this paper, we will make an intensive study of the notions of noetherian, artinian, simple and   regular      -semihyperrings. the bulk of this paper...

متن کامل

“ Ideal Theory ” as Ideology

individual subsume the workers, women, and nonwhites who are also persons—even if, admittedly, they were not historically recognized as such? I think the problem here is a failure to appreciate the nature and magnitude of the obstacles to the cognitive rethinking required, and the mistaken move— especially easy for analytic philosophers, used to the effortless manipulation of variables, the shi...

متن کامل

Uniform Approximation and Maximal Ideal Spaces

Let X be a compact set in the z-plane. We are interested in two function spaces associated with X: C(X) — space of all continuous complex-valued functions on X. P(X) =space of all uniform limits of polynomials on X. Thus a function ƒ on X lies in P{X) if there exists a sequence {Pn} of polynomials converging to ƒ uniformly on X. Clearly P(X) is part of C(X). QUESTION I. When is P(X) = C(X)t i.e...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Advances in Mathematics

سال: 2013

ISSN: 0001-8708

DOI: 10.1016/j.aim.2013.05.020